NCERT Solutions for Class 9 Maths Chapter 1 Number systems (Hindi Medium)
प्रश्नावली 1.1
Ex 1.1 Class 9 गणित Q2. 3 और 4 के बीच में छ: परिमेय संख्याएँ ज्ञात कीजिए |
Solution:
हमें छ: संख्याएँ प्राप्त करना है |
इसलिए, 6 + 1 = 7
अब, 3 और 4 को परिमेय संख्या के रूप में व्यक्त करने पर,
Ex 1.1 Class 9 गणित Q4. नीचे दिए गए कथन सत्य हैं या असत्य? कारण के साथ अपने उत्तर दीजिए।
(i) प्रत्येक प्राकृत संख्या एक पूर्ण संख्या होती है।
(ii) प्रत्येक पूर्णांक एक पूर्ण संख्या होती है।
(iii) प्रत्येक परिमेय संख्या एक पूर्ण संख्या होती है।
Solution:
(i) प्रत्येक प्राकृत संख्या एक पूर्ण संख्या होती है। (सत्य)
कारण: क्योंकि पूर्ण संख्या में सभी प्राकृत संख्याएँ शामिल हैं |
(ii) प्रत्येक पूर्णांक एक पूर्ण संख्या होती है। (असत्य)
कारण: क्योंकि पूर्णांक में ऋणात्मक पूर्णांक भी होते हैं जबकि पूर्ण संख्याओं में कोई भी संख्या ऋणात्मक नहीं होता हैं |
(iii) प्रत्येक परिमेय संख्या एक पूर्ण संख्या होती है। (असत्य)
कारण : परिमेय संख्या में अन्य कई प्रकार के संख्याएँ आती है जिनकों पूर्ण संख्या के जैसे प्रदर्शित नहीं किया जा सकता है |
प्रश्नावली 1.2
Ex 1.2 Class 9 गणित Q1. नीचे दिए गए कथन सत्य हैं या असत्य हैं? कारण के साथ अपने उत्तर दीजिए।
(i) प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है।
उत्तर:
(i) प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है। (सत्य)
कारण: क्योंकि वास्तविक संख्याओं में अपरिमेय संख्याएँ भी होती है |
(ii) संख्या रेखा का प्रत्येक बिन्दु √m के रूप का होता है, जहाँ m एक प्राकृत संख्या है।
उत्तर:
(ii) संख्या रेखा का प्रत्येक बिन्दु √m के रूप का होता है, जहाँ m एक प्राकृत संख्या है। (असत्य)
कारण: संख्या रेखा पर दोनों ऋणात्मक एवं धनात्मक संख्याएँ होती है, परन्तु प्रत्येक बिंदु पर एक वर्गमूल संख्या हो यह संभव नहीं है |
(iii) प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।
उत्तर:
(iii) प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है। (असत्य)
कारण: क्योंकि वास्तविक संख्याओं के समूह में परिमेय सा संख्याएँ एवं अपरिमेय संख्याएँ दोनों होती हैं | केवल अपरिमेय संख्या नहीं होती हैं |
Ex 1.2 Class 9 गणित Q1. Q2. क्या सभी धनात्मक पूर्णांकों के वर्गमूल अपरिमेय होते हैं? यदि नहीं, तो एक ऐसी संख्या के वर्गमूल का उदाहरण दीजिए जो एक परिमेय संख्या है।
उत्तर:
सभी धनात्मक पूर्णांकों के वर्गमूल अपरिमेय नहीं होते हैं,
हम धनात्मक पूर्णांक 1, 2, 3, 4, 5, 6, 7, 8, और 9 का उदाहरण लेते है |
√1 = 1 (परिमेय)
√2 = √2 (अपरिमेय)
√3 = √3 (अपरिमेय)
√4 = 2 (परिमेय)
√5 = √5 (अपरिमेय)
√6 = √6 (अपरिमेय)
√7 = √7 (अपरिमेय)
√8 = √8 (अपरिमेय)
√9 = 3 (परिमेय)
उपरोक्त उदाहरण में हम देखते हैं कि 1, 4 और 9 की वर्गमूल क्रमश: 1, 2, और 3 है जो परिमेय संख्या है |
Ex 1.2 Class 9 गणित Q3. दिखाइए कि संख्या रेखा पर √5 को किस प्रकार निरूपित किया जा सकता है।
Solution:
OA = 1 इकाई, AB = 1 इकाई,
समकोण ΔAOB में, पाइथोगोरस प्रमेय से,
OB2 = OA2 + AB2
OB2 = 12 + 12
OB2 = 2
OB = √2
अब समकोण ΔBOC में, पाइथोगोरस प्रमेय से,
OC2 = OB2 + BC2
OC2 = (√2)2 + 12
OC2 = 2 + 1 = 3
OC = √3
अब समकोण ΔCOD में, पाइथोगोरस प्रमेय से,
OD2 = OC2 + DC2
OD2 = (√3)2 + 12
OD2 = 3 + 1 = 4
OD = √4 = 2
अब समकोण ΔDOE में, पाइथोगोरस प्रमेय से,
OE2 = OD2 + DE2
OE2 = (2)2 + 12
OE2 = 4 + 1 = 5
OE = √5
अब O को केंद्र और OE को त्रिज्या मानकर एक चाप खींचेगे जो संख्या रेखा को OE’ पर प्रतिच्छेद करता है जहाँ OE = OE’ = है |
प्रश्नावली 1.3
Ex 1.3 Class 9 गणित Q1. निम्नलिखित भिन्नों को दशमलव रूप में लिखिए और बताइए कि प्रत्येक का दशमलव प्रसार किस प्रकार का है:
Solution:
Solution:
और q पूर्णांक हैं जिनका 1 के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है अर्थात ये सह-अभाज्य संख्याएं हैं और इनका सांत दशमलव प्रसार है |
सांत दशमलव प्रसार के लिए q का अभाज्य गुणनखंड 2n या 5n या 2m× 5n के रूप का होना चाहिए |
Ex 1.3 Class 9 गणित Q7. ऐसी तीन संख्याएँ लिखिए जिनके दशमलव प्रसार अनवसानी अनावर्ती हों |
हल : सभी अपरिमेय संख्याएँ अनवसानी अनावर्ती दशमलव प्रसार देती है| इसलिए तीन उदाहरण हैं – √2, √3, √5 आदि |
अर्थात 0.714285 ……. और 0.81818181… के बीच तीन अपरिमेय संख्याएँ हैं |
(i) 0.72010010001……
(ii) 0.751121231234……..
(iii) 0.80145672434890………
Ex 1.3 Class 9 गणित Q9. बताइए कि निम्नलिखित संख्याओं में कौन-कौन संख्याएँ परिमेय और कौन-कौन संख्याएँ अपरिमेय हैं |
(i) √23
हल : अपरिमेय संख्या हैं |
(ii) √225 = 15
हल : परिमेय संख्या है |
(iii) 0.3796
हल : परिमेय सख्या है |
(iv) 7.478778 ….
हल : अपरिमेय संख्या हैं |
(v) 1.101001000100001…..
हल : अपरिमेय संख्या हैं |
प्रश्नावली 1.4
Ex 1.4 Class 9 गणित Q1. उत्तरोत्तर आवर्धन करके संख्या रेखा पर 3.765 को देखिये |
हल :
Ex 1.4 Class 9 गणित Q2. 4 दशमलव स्थानों तक संख्या रेखा पर 4.2626…. को देखिए |
हल : 4 दशमलव स्थान तक 4.2626…. है |
प्रश्नावली 1.5
Ex 1.5 Class 9 गणित Q4. संख्या रेखा पर √9.3 को निरुपित कीजिए |
हल :
(i) एक 9.3 cm का रेखाखंड AB खींचिए और से 1 cm आगे बिंदु C तक बढाइये |
(ii) इसप्रकार बने रेखाखंड AC का लंब समद्विभाजक खींचिए जो AC को बिंदु O पर काटती है |
(iii) AO या CO को वृत्त की त्रिज्या मानकर एक अर्धगोला खींचिए |
(iv) बिंदु B से AC पर लंब खींचिए जो अर्धवृत की परिधि को बिंदु D पर काटती है | BD या BE अभीष्ट √9.3 का संख्या रेखा पर माप है |
प्रश्नावली 1.6
Ex 1.6 Class 9 गणित Q1. ज्ञात कीजिए :
Ex 1.6 Class 9 गणित Q2. ज्ञात कीजिए :
Ex 1.6 Class 9 गणित Q3. सरल कीजिए :